How Aquaponics Works
They say one person's trash is another's treasure. The day-old bagels a franchise views as too stale for customers taste perfectly delicious to the hungry when they're distributed at a homeless shelter. The annoying, hyperactive puppy one family abandons at the dog pound because it chews shoes becomes another family's rambunctious little delight. What one group sheds as waste, another takes in as nourishment. It's a lovely circle.
With aquaponics, this same circle is turning -- only it doesn't have anything to do with bagels or puppies. Aquaponics is a method of cultivating both crops and fish in a controlled environment. The fish are kept in tanks, and the plants are grown hydroponically -- meaning without soil. They sit in beds, but their roots hang down into a tub of water. When fish live in tanks, their waste builds up in the water, and it eventually becomes poisonous to them. But what is toxic for fish is nourishing for plants -- they love nothing more than to suck down some fish waste. So with aquaponics, the fish waste-laden water from the fish tanks is funneled to the tubs where the plants dangle their roots. When the plants absorb the nutrients they need from that water, they basically cleanse it of toxins for the fish. Then that same cleansed water can be funneled back into the fish tanks.

This method of farming fish and crops is a good thing on several different levels. First of all, it removes fertilizer and chemicals from the agricultural process. The fish waste acts as a natural fertilizer for the crops, instead. Second of all, it saves water because the water is recycled within the tanks rather than sprayed across a field of crops with abandon. Thirdly, an aquaponics environment can be set up anywhere, so it reduces the need for local communities to import fish and crops from other countries. That saves fuel -- also a positive.
­Aquaponics, with its fancy name, may sound like a trendy new concept developed by environmentalists. But it's actually as old as the hills. The origins of aquaponics can be traced to ancient Egyptian and Aztec cultures. The ancient Aztecs developed chinampas, man-made floating islands, which consisted of rectangular areas of fertile land on lake beds. Aztecs cultivated maize, squas­h and other plants on the chinampas and fish in the canals surrounding them. The fish waste settled on the bottom of the canals, and the Aztecs collected the waste to use as fertilizer [source: Growfish]. Additionally, countries in the Far East like Thailand and China have long used aquaponic techniques in rice paddies.

Let's learn how this ancient farming method is applied today.
Aquaponics Basics
Cultivating plants and fish through aquaponics is both easy on the environment and easy on finances. Aquaponic systems don't use any chemicals, and they require about 10 percent of the water used in regular farming. The systems are closed -- that is, once they've been filled with water, only a small amount is introduced into the system thereafter to replace evaporated water. But how can a water-based system use less water than conventional farming?

The answer is the continual reuse and recycling of water through naturally occurring biological processes. Basically, the waste from fish produces natural bacteria that converts waste like ammonia into nitrate. This nitrate is then absorbed by plants as a source of nutrients. The basic principle of aquaponics is to put waste to use.

Let's take a look at the step-by-step process:

Fish living in aquaponic tanks excrete waste and respirate ammonia into water. Ammonia is toxic to fish in high concentrations, so it has to be removed from the fish tanks for fish to remain healthy.
Ammonia-laden water is processed to harvest helpful types of bacteria such as Nitrosomonas and Nitrobacter. Nitrosomonas turns ammonia into nitrate, while nitrobacter converts into nitrate. Both of these nitrates can be used as plant fertilizer.
Nitrate-rich water is introduced to the hydroponically grown plants (plants grown without soil). These plants are placed in beds that sit on tubs filled with water, and the water is enhanced by the nitrate harvested from the fish waste. The plants' bare roots hang through holes in the beds and dangle in the nutrient-laden water.
The roots of the plants absorb nitrates, which act as nutrient-rich plant food. These nitrates, which come from fish manure, algae and decomposing fish feed, would otherwise build up to toxic levels in the fish tanks and kill the fish. But instead, they serve as fertilizer for the plants.
The hydroponic plants' roots function as a biofilter -- they strip ammonia, nitrates, nitrites and phosphorus from the water. Then, that clean water is circulated back into the fish tanks.
Because fish waste is used as fertilizer, there's no need for chemical fertilizers. The money and energy it would take to put those chemicals to work is saved. In fact, the only conventional farming method that's used to operate an aquaponics system is feeding the fish.

Now you know how aquaponics works on a biochemical level. But which kinds of fish are best for these systems? And which plants thrive in them? Let's find out.

Aquaponics System Requirements
Many warm-water and cold-water fish species have been adapted to aquaponics systems. The most commonly cultivated fish in aquaponics systems are tilapia, cod, trout, perch, Arctic char and bass. But out of all of these, tilapia thrives best. Tilapia are very tolerant of fluctuating water conditions, such as changes in pH, temperature, oxygen and dissolved solids. They also are in high demand -- this white-fleshed fish is frequently sold in markets and restaurants.

Which plants thrive well in aquaponics systems? That depends on the density of the fish tanks and the nutrient content of the fish waste. In general, the best plants to cultivate in an aquaponics system are leafy greens and herbs. The high-nitrogen fertilizer generated through fish waste allows plants to grow lush foliage. So, leafy plants tend to flourish in aquaponics systems. Lettuce, herbs and greens like spinach, chives, bok choy, basil, and watercress have low to medium nutritional requirements and usually do well in aquaponics systems.

Plants yielding fruit have higher nutritional requirements, and although they grow well in aquaponics systems, they need to be placed in systems that are heavily stocked and well established. Vegetables like bell peppers, cucumbers and tomatoes can be cultivated in these types of aquaponics systems. The only plants that don't seem to respond as well are root crops like potatoes and carrots. Without soil, these crops wind up misshapen, and they're hard to harvest properly.

Aside from plants and fish, the other major component of aquaponics is the water itself. That said, carefully monitoring the water's pH, which determines acidity, is of the upmost importance to ensure safe levels for the fish. Water quality testing equipment is very important to ensure that both fish and plants remain healthy. It's also important to keep an eye on dissolved oxygen, carbon dioxide, ammonia, nitrate, nitrite and chlorine. The density of the fish in the tanks, the growth rate of the fish and the amount of feed they're given can produce rapid changes in water quality, so careful monitoring is important. Although the ratio of fish tank water to hydroponic product depends on fish species, fish density, plant species and other factors, a general rule of thumb is a ratio of 1:4 tank contents to bed contents. Basically, for every one part of water and fish, you'll want to have four parts plant and bed material.

Some aquaponics systems are outfitted with biofilters, living materials that naturally filter pollutants out of water and that facilitate the conversion of ammonia and other waste products. Other systems feed fish waste directly into the hydroponic vegetable beds. Gravel in the vegetable bed acts has a bioreactor, a material that helps carry out the chemical processes of living organisms. The gravel does this by both removing dissolved solids and providing a place for the nitrifying bacteria to convert into plant nutrients.

Want to bring food production into your backyard? Read on to learn how to set up your own aquaponics system.




全日照  8個小時日照 瓜類、茄果類、豆類、山藥、豆薯(地瓜)。番茄、黃瓜、茄子、辣椒等喜溫中、強光性









菜豆生育過程中,主要吸收鉀和氮較多,還要吸收一定量的磷和鈣,才能良好發育。結莢期吸收磷鉀量較大。磷鉀肥對菜豆植株的生長發育、根瘤菌的發育、花芽分化、開花結莢和種子的發育等均有影響。缺乏磷肥,菜豆嫩莢和種子的品質和產量就會降低。缺鈣,幼葉葉片捲曲,葉緣失綠和生長點死亡。缺硼,則根係不發達,影響根瘤菌固氮,使花和豆莢發育不良。 耐陰半陰(大概3-4小時日照) 應選擇耐陰的蔬菜種植,如萵…


蝶豆花 原產拉丁美洲的蝶豆花是一種典型的熱帶蔓藤植物,全年盛開。
butterfly pea,拉丁語叫:Clitoria ternatea,泰語叫Dok Anchan
營養價值 蝶豆花具有豐富的維他命A,C和E, 而且可以提高免疫力, 幫助和促進皮膚的彈力和骨膠原, 同時還具有補腦,促進腦的活力,防止胃痛,抗憂郁、抗壓力、鎮靜、止驚厥、緩和情緒等天然保健功效。
食用價值 蝶豆花的可食部位是葉、花及嫩莢。較幼嫩的葉片及盛開的花朵,亦可拿來煮湯、油炸等。用嫩芽來炒肉絲或煮熟後食用,都十分可口。蝶豆花的葉及花的萃取液,可當作純天然的食品染料。



◎飼養與管理的重點 只要不是劇烈的變化,錦鯉很容易適應各水溫水質等環境的變化。並不是沒有大庭園就無法飼養,有人甚至在二樓陽台或頂樓陽台造水池飼養。然而我們是欣賞錦鯉雄壯豪邁之氣,因此水池盡量寬闊為宜,以水深1.2m以上為理想。魚池必須有底水排出,過濾循環等設備。用水不一定要取地下水,自來水也可以飼養。
良好的魚餌不會崩壞鯉的體型。餌的量也是在夏天水溫 高的時候,訂定停餌期間,才是整體來說使鯉變胖最重要的秘訣。如果還是想 要給很多餌的話,要增加循還量。錦鯉在水溫超過28度的時候,應給與相當於 鯉全體重量3%的餌。水溫25度時1.5%,水溫20度時0.3%,16度以下則要停止鯉餌,這就是鯉魚長得強壯的要訣。連續不斷地給鯉餌的話,引起內臟障礙, 而影響到鯉不會長壯,甚至導至體型的變歪。