跳到主要內容

Duckponics鴨耕共生

Duckponics鴨耕共生
Patrick improves our mid-level aquaponics system
When I first came to Windward, Duckponics was a project I was immediately interested in. Coming with a background in irrigation and a long time love of pond works and hobby aquariums, I was excited for this was a chance to explore this area at a level I had only dreamed of. Much was in place already, but much was still left to do, and still more was yet unknown. Before I jumped into Duckponics too deep though, I had an opportunity to work with a smaller system already in place here, Barrelponics.
Patrick adds chicken wire to the cattle panel covers

Barrelponics is a study in theory and mechanics. Many projects here start out this way, small. It's a great way to test an idea, a mock up if you will, before making any larger commitments. With anything you do, especially in the presence of unknowns, there will be mistakes. Mistakes, loss, fails, whatever you want to call them, are not necessarily bad if you choose to look at them in the right light. We learn so much from our mistakes and the process of correcting them. This is why starting small works so well for us, small projects = small mistakes = small loss. Once the problems are worked out at the small level we are ready to move on to the next level. So, after getting my hands dirty with barrelponics making some minor changes and additions I had the understanding necessary to more confidently move over to duckponics.

the combination grow raft and float
As I said above, so much was already there. The duck pond, the flood tank, the two large vegetable grow beds, and the smaller duck weed tanks as well as all the tubing, electrical, and drainage. This spring, during his apprenticeship, Jon played an important role in getting duckponics up and running for the first time. So, when I started working on it in early summer, it functioned well, but I wanted to advance the system to achieve its true operational vision. Initially, I focused on getting the holding tank to trigger a flood properly, a better dispersion of water to the grow beds was wanted, working out an appropriate timing with the automatic pump system both in frequency and duration was needed, and inflow and outflow still had to be worked out.


After all this was done effectively (which was much easier after my experiences with barrelponics), there was a whole new gambit of unforeseen challenges to address. Such as, with this abundance of vegetation right there in the open, it invited many local critters to our hopeful feast: the ever present ground squirrels wanted the cucumbers; the yellow jackets wanted the water; and even our own ducks couldn't wait for us to harvest the duckweed for them and were raiding the tanks prematurely. So, it was obvious that protective covers were a must. We made these out of cattle panels and chicken wire and they have proven pretty effective so far.

October 21:
A few words on water flow challenges

the inlet to the flood tank
Another challenge that presented itself even after the basic water flow mechanisms were in place was the effect of the rate of water flow. We have a submersible pump that pulls water from our duck pond up to our flood tank. The pump delivers water to the tank through a one-inch pipe that connects to a 3/4 inch inlet fitting.
This works fine, however, there is a point when the upper float applies enough pressure to the hatch chain to begin opening the rubber flapper door that releases the water to the various vegetable grow tanks. That door is a two inch hole that is diverted to two different pipelines that have ball valve that allows us to control the rate that water flows from the holding tank into the grow tank. If those ball valves are fully open, enough water escapes through the lower port so that the water level in the flood tank never reaches a level where the upper float completely opens the hatch door for the duration of the flood.
So, after much tinkering, we were able to close the ball valves just enough to hold back the escaping water long enough for the pump to trigger the full open flood while still having the ball valves open enough to deliver enough pressure to power the water delivery tubes for the grow beds. If it isn't one thing it's another!

October 22:
Water distribution

So now that the water is flowing and everything seems to be going fine, we need to look at how the plants receive that water. First of all, it is important to know that in any hydroponic system, it is the water that delivers the nutrients the plants need, not the soil. In most hydroponic systems a lot of money is invested in purchasing additives and nutrients for the water, and even more is spent on purchasing special neutral growing mediums such as Hydroton or Vermiculite. That is why we use water from the duck pond, the ducks fertilize the water for free, and in the process the plants filter the water and return cleaner water for the ducks' enjoyment.
ball valve flow adjuster
Awesome!
Also, we use pea gravel as our growth medium as this is more cost effective, more natural, and supports the nitrifying bacteria needed for the necessary biological process of converting ammonia to nitrite and then to nitrate. Pea gravel also makes a great low grade filter.

While we were getting some of the other parts in place and working properly, we were delivering the water to the grow beds as a direct flood to the edge of the bed, you will probably see this in some of the early photos. But as I've said before, the long term vision was for something more sophisticated than this and through experimenting with the setup, we more fully realized the benefits of a "prettier" delivery. Basically, with the pea gravel acting as some what of a filter, if all the water is dumped on one side of the grow tank the nutrients may be unevenly distributed throughout the tank resulting in uneven plant growth.

watering system in action
So, back to the plan. If you have a circular grow bed, one of, if not the most efficient, method of dividing space is to quarter it off. Instead of dumping the water from a tube at the edge we connected four tubes with a central intersection. We capped the end of the three dead end tubes and cut holes in the side of the tank to hold these tube ends up.

Now came the tricky part. From previous observation, we noticed that with sufficient pressure these holes in these tubes acted like spray nozzles, damaging any small plants that were in their line of delivery. The solution we came up with was to drill the holes on either side of the top of the pipes so the water shoots up at an angle and then adjusted the pressure to make sure none of the water flow was directed outside the tank. By using an upward arc in the water we use gravity to pull the water back down to the plants at the speed of rain which every plant is essentially used to.
October 23:
Protecting our pump
It was stated earlier that at a certain point this summer there was a significant increase to our duck flock and this had some unforeseen effects on the pump for duckponics. It was all those baby feathers that eventually clogged up the turbine in the pump and caused it to burn out. We don't want to get rid of the ducks, so what do we do about the feathers?

Well, we cleaned out the duck pond as best as time would allow since other projects (such as watering the main garden and keeping the thriving cucumbers and mint alive in the grow beds of duckponics) depend on the functioning of the duck pond. However, no matter how often we may endeavor to go through a full scale pond flush, the feathers as well as other debris still come back to haunt us, quickly.

We don't know yet if it is the total solution, but we think it is part of it. The box filter. Basically we took an old plastic milk crate and cut mesh screen pieces from a satellite dish to fit on all six sides. We wired them on, cut a custom hole to receive the pump, and attached the two together before resubmerging the new pump.

I don't know if you've seen the screen mesh that old satellite dishes are covered with but the holes are pretty small. Still large enough for plenty of water to move through but just small enough to keep the feathers from getting to the pump. It still requires some checking in on but we would rather clean off the box filter every couple of weeks than replace the pump just as often.

Also on the drawing board is a possible cyclone settling tank that would allow the silt to settle out before being delivered to the flood tank.

留言

這個網誌中的熱門文章

蔬菜對溫度日照條件的要求

蔬菜對溫度日照條件的要求
全日照  8個小時日照 瓜類、茄果類、豆類、山藥、豆薯(地瓜)。番茄、黃瓜、茄子、辣椒等喜溫中、強光性
蔬菜夏秋季生產,玉米、青椒、西瓜、南瓜、西紅柿、茄子、芝麻、向日葵類。
其次是根莖類,如:馬鈴薯、甜菜、胡蘿蔔、白蘿蔔、甘藷、山藥等等。至少需半日照,才能生長,芋頭雖喜歡全日照,但比其他蔬菜耐蔭。 
需要中等光照大白菜、甘藍、芥菜、蒜、洋蔥。 

長日性蔬菜白菜、甘藍、芥菜、蘿蔔、胡蘿蔔、芹菜、菠菜、萵苣、蠶豆、豌豆、大蔥、洋蔥。

短日性蔬菜豇豆、扁豆、莧菜、空心菜。         

中光性蔬菜黃瓜、番茄、茄子、辣椒、菜豆

菜豆

菜豆喜溫暖,不耐高溫和霜凍。菜豆種子發芽的適溫為20-30℃;在40℃以上的高溫和10℃以下的低溫,種子不易發芽。幼苗生長適宜氣溫為18-25℃。花芽分化的適宜氣溫為20-25℃,過高或過低溫度易出現發育不完全的花蕾、落花。

菜豆對光照強度的要求較高。在適宜溫度條件下,光照充足則植株生長健壯,莖的節間短而分枝多,開花結莢比較多,而且有利於根部對磷肥的吸收。當光照強度減弱時,植株易徒長,莖的節間長,分枝少,葉質薄,而且開花結莢數少,易落花落莢。

菜豆根系強大,能耐一定程度乾旱,但喜中度濕潤土壤條件,要求水分供應適中,不耐澇。生長期適宜土壤濕度為田間最大持水量的60%-70%,空氣相對濕度以80%為宜。開花結莢期對水分最敏感,此期土壤乾旱對開花結莢有不良影響,開花數、結莢數及莢內種子數減少。土壤水分過大時,下部葉片黃化,早脫落。空氣濕度過大會引起徒長、結莢不良。

菜豆具有深根性和根瘤菌,對土壤的要求不甚嚴格,但仍以土層深厚肥沃、排水良好的輕砂壤土或粘質壤土為好。土壤過於粘重、低溫、排水和通氣不良則生長不良,炭疽病重。菜豆喜中性至微酸性土壤,適宜的土壤pH為5-7.0,其中以州6.2-6.8最適宜。菜豆最忌連作,生產中應實行2-3年輪作。

菜豆生育過程中,主要吸收鉀和氮較多,還要吸收一定量的磷和鈣,才能良好發育。結莢期吸收磷鉀量較大。磷鉀肥對菜豆植株的生長發育、根瘤菌的發育、花芽分化、開花結莢和種子的發育等均有影響。缺乏磷肥,菜豆嫩莢和種子的品質和產量就會降低。缺鈣,幼葉葉片捲曲,葉緣失綠和生長點死亡。缺硼,則根係不發達,影響根瘤菌固氮,使花和豆莢發育不良。 耐陰半陰(大概3-4小時日照) 應選擇耐陰的蔬菜種植,如萵…

錦鯉養殖基本知識

◎飼養與管理的重點 只要不是劇烈的變化,錦鯉很容易適應各水溫水質等環境的變化。並不是沒有大庭園就無法飼養,有人甚至在二樓陽台或頂樓陽台造水池飼養。然而我們是欣賞錦鯉雄壯豪邁之氣,因此水池盡量寬闊為宜,以水深1.2m以上為理想。魚池必須有底水排出,過濾循環等設備。用水不一定要取地下水,自來水也可以飼養。
<因為都市中有景觀安全的需求,及屋頂花園有荷重的需求,錦鯉池水深可以低到30cm左右。>
◎每天排水
A、糞或枯死的藻類全部送至過濾槽的話,耗氧量會增大,pH就下降,更會轉變為亞硝酸,增了過濾槽的負擔。為了盡量減輕過濾槽的負擔,每天至少把魚池的底水排水使固物排出去,把中間水送去沉澱槽及過濾槽。 
B、把固體廢物的魚糞集中排出,最好不要從池底打氣而是從排糞口的上方40~50公分打打氣。如此氣泡往上昇。池水產生對流。污物就集中於排糞口。
<可以設計水流把固體廢物盡量集中或排出到過濾系統中。>
◎過濾槽管理
A、細菌附著於濾材,分解固體廢物會消耗大量的氧。 
B、溶氧不足時,厭氧菌會把硝酸還原亞硝酸,或從碳酸氣發生沼氣,也會從硫酸分解產生硫化氫等有毒氣體。
<如果溶氧不足,可以優先把打氣設備放置到生化過濾槽中。>
◎溶氧要充份
A、水中溶氧不足的話,會影響錦鯉的生育,飼料的消化,,水質的維持等等。
B、硝酸,亞硝酸的濃度增高時,會影響溶氧量。所以優先去除硝酸及亞硝酸。
C、使用沸石可輕易去除硝酸,沸石量約等重於魚體總重量。
<沸石再生法,是將沸石浸泡25℃以上1:10食鹽水數小時,再以清水洗淨即可。>
◎水質的控制
水質硬度高的話,錦鯉肌膚經常會有少許充血的狀態。豔麗性也會慢慢消失,紅緋會上升。pH值低,肌膚變的很不好看,但是雖餵增色飼料,依然不見起色,徒增浪費。pH值7.1~7.5最適宜的。
◎鯉餌的重要性
良好的魚餌不會崩壞鯉的體型。餌的量也是在夏天水溫 高的時候,訂定停餌期間,才是整體來說使鯉變胖最重要的秘訣。如果還是想 要給很多餌的話,要增加循還量。錦鯉在水溫超過28度的時候,應給與相當於 鯉全體重量3%的餌。水溫25度時1.5%,水溫20度時0.3%,16度以下則要停止鯉餌,這就是鯉魚長得強壯的要訣。連續不斷地給鯉餌的話,引起內臟障礙, 而影響到鯉不會長壯,甚至導至體型的變歪。
◎魚病預防
水的管理與定期消毒都是很重要的步驟,…

蝶豆花

蝶豆花 原產拉丁美洲的蝶豆花是一種典型的熱帶蔓藤植物,全年盛開。
butterfly pea,拉丁語叫:Clitoria ternatea,泰語叫Dok Anchan
中文名叫蝶豆花,藍蝶花,藍蝴蝶、蝴蝶藍花,還有蝴羊豆、豆碧等別名。
用蝶豆花當作高品位浪漫的茶品飲用、以及當作天然食品色素制作糕點是拉丁美洲和南洋國家的風情和習俗。
蝶豆花的味道自然甘甜,南洋國家的一些五星級酒店通常把蝶豆花茶當作高貴的迎賓茶來接待貴賓。
營養價值 蝶豆花具有豐富的維他命A,C和E, 而且可以提高免疫力, 幫助和促進皮膚的彈力和骨膠原, 同時還具有補腦,促進腦的活力,防止胃痛,抗憂郁、抗壓力、鎮靜、止驚厥、緩和情緒等天然保健功效。
蝶豆花中的天然藍色素,也是有療效的。如果將其加入檸檬並調制成花茶飲品,就是保健心臟血管的絕佳飲料。
食用價值 蝶豆花的可食部位是葉、花及嫩莢。較幼嫩的葉片及盛開的花朵,亦可拿來煮湯、油炸等。用嫩芽來炒肉絲或煮熟後食用,都十分可口。蝶豆花的葉及花的萃取液,可當作純天然的食品染料。

直達香草(herb4kitchen)
PS.營業用批量報價