跳到主要內容

養耕共生中的鐵

Iron in Aquaponics

by Nate Storey


26FLARES Twitter 2Facebook 6Google+ 18
StumbleUpon 0Pin It Share 0LinkedIn 0inShareBuffer 0Email --Email to a friendReddit 0Filament.ioMade with FLAREMore Info

In this article...
Iron in Aquaponics
Why is Iron Important?
Iron Availability (or Lack thereof)
Why are these details important?
Plants have adapted to this issue
Chelation – An Aquaponic Iron Fixing Technique
Other Chelating Agents
Forms of Chelated Iron
Common thinking about adding chelated iron
Cost of Chelated Iron
UPDATE:
Update #2: Beware red dye in Miller’s FeEDDHA

Iron in Aquaponics *

*** Fair Warning: This post gets little technical! ***

UPDATE: See the bottom of this post to find out what chelated iron products you can use in your AP system!
Why is Iron Important? *

By mass, iron is the most plentiful element on the planet, and one of the oldest metals known to and used by humanity. It is also an important plant and animal nutrient and thus, very crucial to your aquaponics system.

Iron is very reactive- that is, it exists in a variety of ionic states (from +6 to -2) but exists primarily as Iron++(II; Ferrous Iron) or Iron+++(III; Ferric Iron) and transitions readily between them depending on environmental variables.

For this reason, oxygen is an important component in many organic molecules that fix oxygen, or moderate REDOX reactions.
Animals & Iron

In animals, the most common iron containing substance is heme complexes, of which, hemoglobin is what we are most familiar with. In hemoglobin, iron helps bind oxygen for transport throughout the body.
Plants & Iron

In plants, iron serves many functions but is an essential component in the production of chlorophyll, the site of photosynthesis.

Without enough iron, plants cannot produce enough chlorophyll, leading to retarded plant growth characterized by interveinal chlorosis. Iron is also a key component of cytochrome- a hemeprotein that plays a key role in ATP generation- the currency of cellular metabolism.

In this capacity it is irreplaceable to both plants and animals. Iron is also plays a major role in many other proteins and reactions.
Iron Availability (or Lack thereof) *

Unfortunately, because it is highly reactive, iron is typically unavailable.

It flits between soluble and insoluble forms, forms compounds with other minerals and in aerobic environments generally (as far as plants are concerned) plays hard to get.
The Issues with Iron in Aquaponics

This poses a problem for aquaponic producers. Because systems are generally aerobic (and certainly aerobic in the root zone), iron deficiencies can often arise- even when there is technically plenty of (ferric) iron within the system.

In the aquaponic solution, iron is commonly available in one of two forms- reduced, soluble Ferrous Iron (2+) and insoluble, oxidized Ferric Iron (3+).

Ferrous iron is available to plants (soluble!). Ferric iron is not (insoluble).

This is important to understand, because ferric iron is the more oxidized form, whereas ferrous iron is not.

In short, as soon as ferrous iron becomes soluble in aerobic envrionments it is often oxidized, becoming ferric iron or reacts with other compounds to become biologically unavailable (especially at high pH values when different hydroxides are formed).

Now, this relationship between oxygen and iron isn’t a full time thing. In reality iron is flitting between ferrous and ferric states, but the dominant state in high pH and oxidized environments is ferric- and this means that your plants cannot take it up.


Why are these details important? *
Because they dictate how we examine the solutions.

Many practitioners throw rusty iron items into their systems falsely assuming that this will supplement system iron.

In a sense it does add to the reservoir of system iron, but not in a constructive or meaningful way. All this does is introduce more ferric iron to the system- a form of iron that was most likely already in plentiful supply.

Other practitioners intentionally develop dedicated anaerobic zones, where ferric iron will be reduced by the oxygen free, anerobic environment to produce ferric iron. This is a more compelling approach, especially in low pH systems, but still does not entirely address the problem of getting the reduced iron ion (Fe++) through the oxygenated aerobic zone surrounding the plant roots (especially in high pH systems where hydroxyl ions are plentiful!).

In low pH systems, ferrous iron has a much better chance of reaching the root zone, simply because there are fewer hydroxyl (OH-) groups to react with along the way, however even in the absence of hydroxyl groups, there are many other chemical obstacles to reaching the plant root zone in adequate quantities.
Plants have adapted to this issue *

This is a problem, but one that has not been overlooked by nature.


You see, plants have been contending for these nutrients for eons, and as a result have developed some amazing chemical means of hijacking ferric iron ions, tying them up, bundling them into the soluble, biochemical equivalent of the panel van, and delivering them, bound and gagged, to the root surface for plant use.

Plants also use a few other techniques to make iron available, including acidifying the root surface by excreting hydronium ions, and secreting iron reducing compounds. But for the sake of aquaponic system management, this first biochemical iron fixing technique is what we will focus on.
Chelation – An Aquaponic Iron Fixing Technique *

This process is called chelation- that is, tying insoluble ferric iron ions and compounds to organic molecules to make them soluble.

Chelation is accomplished by special organic molecules called chelatins or chelating agents. These are organic molecules that are specially designed to capture, or “dissolve” metals, of which iron is one.

In the plant world, chelatins are produced by the plant roots and leaked into the soil capture and deliver insoluble iron ions.

The most effective of these compounds are phytosiderophores which bind ferric iron very strongly, pulling them from the various insoluble precipitates and substances in which they most commonly occur. These are special compounds produced by certain plants (phytosiderophores) and bacteria (siderophores) that are incredibly effective at binding iron. The grasses (Poaceae), and especially barley are particularly effective at producing phytosiderophores for capturing iron.

(As a side note: a great deal of research is being done on using barley to produce siderophores for iron sequestration, and holds some interesting implications for aquaponic system where practitioners are willing to grow barley.)
Other Chelating Agents *

Other common chelating agents are amino acids, organic acids (especially humic acids), and polyphenols.

These are compounds that help keep the iron soluble and biologically available to the plants and algae in the system. While these compounds can be introduced, and humic or “tea-water” solutions can be fostered and managed, they aren’t always enough to keep iron available to the plants- especially in systems with a pH or 7 or above. In these systems, an artificial chelatin is often required.

Because I use peat potting mixes for all of my seedling germination and transplants, my systems typically maintain high levels of humic substances, however I still supplement chelated iron regularly.


Iron is one of the plant nutrients that must be supplemented in almost all aquaponic systems.

To supplement iron, chelated iron must be added to systems.

Admissible under USDA Organic standards, chelated iron is an artificially chelated iron ion- essentially, iron attached to an organic molecule to make it soluble.

By adding chelated iron, iron deficiencies in your plants can be avoided.
Forms of Chelated Iron *

The most common forms of chelated iron are:

FeEDTA: This is a slightly toxic form that aquaponic practitioners should not use. This type of chelated iron is commonly used as an herbicide to kill broadleaf weeds. It should not be used just because of it’s toxicity, but also because it typically only effectively chelates iron up to the pH range of 6.3 or 6.4. Above this range it is not a stable chelate. So, using FeEDTA in your consistently pH 7.0 system represents a significant amount of money wasted in comparison to other forms of chelated iron. For this reason I recommend that AP practioners do not use FeEDTA. It is ironic that this is the most commonly sold and used form of chelated iron in aquaponic systems as it is fairly ineffective- the equivalent of modern “aquaponic snake oil.”

Fe DTPA: This is what I recommend for most systems at pH values between 6 and 7.5. It is commonly available at lawn and garden stores.

FeEDDHA: This is what I recommend for systems above pH values up to 9.0 (let’s hope your pH never gets that high!), and the best all-round form of iron chelate- especially for starting systems. Effective at a broad pH range, FeEDDHA maintains iron solublility in almost all of the water conditions encountered by startup aquaponic systems

Chelated iron fertilizer is available from many different suppliers. I typically get mine from the local hardware store.
Common thinking about adding chelated iron *

There are two schools of thought on chelated iron addition.

Some say that chelated iron should be applied any time you see deficiency. This is a reasonable and reactionary dosing method, but ultimately means that your plants must first suffer from iron depletion and deficiency before the problem is addressed. In this scenario plant production can be negatively impacted. The other (and better) school of thought is to apply iron at the standard UVI system rate of 2mg/L every three weeks.

Iron can also be applied through foliar application- using either chelated iron or ferrous sulfate mixed at low concentrations. Foliar application is great for fast response, but because iron isn’t a mobile nutrient inside plant tissues, iron will have to be supplemented regularly using this method- a time consuming, and ultimately less effective iron supplementation method.



Using this method, iron can be regularly dosed so that iron deficiencies do not arise in your system.
Cost of Chelated Iron *

While many practitioners complain about cost, when bought in the 5-10 pound bag, chelated iron is really not very expensive, and often even in large commercial systems, will last for many months.

At the dosing rate above, a 10 pound, $15 bag of chelated FeDTPA will last well over a year, or less than $1 per month. At higher iron concentrations it will last much longer.



* The above material is copyright Nate Storey, Ph.D *

We hope that helps you better understand the iron in your aquaponics system. For more discussion, please visit ourGoogle+ Community on Aquaponics.
UPDATE: *

We’ve had several folks ask about where they can get good iron supplements and how much they cost. Here is that info:

Chelated iron products you can find on the web – available on Amazon and other online stores:

“Miller DP”- DTPA (What we use- on the shelf or ordered through Ace hardware)
“Sequestrene”- DTPA (5 lbs bag on Amazon for $57)
“Miller FerriPlus”- EDDHA (SunshineGardensFl dot com; 1 lb for $20, or 20 lbs for $300)
“Sequestar Iron 6% Chelate”- EDDHA (RoseCare dot com; 5 lbs for $73)
All of these products will work great in your system!
Update #2: Beware red dye in Miller’s FeEDDHA *

A friend and blog reader let us know about this product that seemed to have turned his entire system water red after adding 3 ounces. It appears the Miller’s product contain some kind of red dye! Check to make sure you’re using good iron supplements without dyes!

留言

這個網誌中的熱門文章

蔬菜對溫度日照條件的要求

蔬菜對溫度日照條件的要求
全日照  8個小時日照 瓜類、茄果類、豆類、山藥、豆薯(地瓜)。番茄、黃瓜、茄子、辣椒等喜溫中、強光性
蔬菜夏秋季生產,玉米、青椒、西瓜、南瓜、西紅柿、茄子、芝麻、向日葵類。
其次是根莖類,如:馬鈴薯、甜菜、胡蘿蔔、白蘿蔔、甘藷、山藥等等。至少需半日照,才能生長,芋頭雖喜歡全日照,但比其他蔬菜耐蔭。 
需要中等光照大白菜、甘藍、芥菜、蒜、洋蔥。 

長日性蔬菜白菜、甘藍、芥菜、蘿蔔、胡蘿蔔、芹菜、菠菜、萵苣、蠶豆、豌豆、大蔥、洋蔥。

短日性蔬菜豇豆、扁豆、莧菜、空心菜。         

中光性蔬菜黃瓜、番茄、茄子、辣椒、菜豆

菜豆

菜豆喜溫暖,不耐高溫和霜凍。菜豆種子發芽的適溫為20-30℃;在40℃以上的高溫和10℃以下的低溫,種子不易發芽。幼苗生長適宜氣溫為18-25℃。花芽分化的適宜氣溫為20-25℃,過高或過低溫度易出現發育不完全的花蕾、落花。

菜豆對光照強度的要求較高。在適宜溫度條件下,光照充足則植株生長健壯,莖的節間短而分枝多,開花結莢比較多,而且有利於根部對磷肥的吸收。當光照強度減弱時,植株易徒長,莖的節間長,分枝少,葉質薄,而且開花結莢數少,易落花落莢。

菜豆根系強大,能耐一定程度乾旱,但喜中度濕潤土壤條件,要求水分供應適中,不耐澇。生長期適宜土壤濕度為田間最大持水量的60%-70%,空氣相對濕度以80%為宜。開花結莢期對水分最敏感,此期土壤乾旱對開花結莢有不良影響,開花數、結莢數及莢內種子數減少。土壤水分過大時,下部葉片黃化,早脫落。空氣濕度過大會引起徒長、結莢不良。

菜豆具有深根性和根瘤菌,對土壤的要求不甚嚴格,但仍以土層深厚肥沃、排水良好的輕砂壤土或粘質壤土為好。土壤過於粘重、低溫、排水和通氣不良則生長不良,炭疽病重。菜豆喜中性至微酸性土壤,適宜的土壤pH為5-7.0,其中以州6.2-6.8最適宜。菜豆最忌連作,生產中應實行2-3年輪作。

菜豆生育過程中,主要吸收鉀和氮較多,還要吸收一定量的磷和鈣,才能良好發育。結莢期吸收磷鉀量較大。磷鉀肥對菜豆植株的生長發育、根瘤菌的發育、花芽分化、開花結莢和種子的發育等均有影響。缺乏磷肥,菜豆嫩莢和種子的品質和產量就會降低。缺鈣,幼葉葉片捲曲,葉緣失綠和生長點死亡。缺硼,則根係不發達,影響根瘤菌固氮,使花和豆莢發育不良。 耐陰半陰(大概3-4小時日照) 應選擇耐陰的蔬菜種植,如萵…

蝶豆花

蝶豆花 原產拉丁美洲的蝶豆花是一種典型的熱帶蔓藤植物,全年盛開。
butterfly pea,拉丁語叫:Clitoria ternatea,泰語叫Dok Anchan
中文名叫蝶豆花,藍蝶花,藍蝴蝶、蝴蝶藍花,還有蝴羊豆、豆碧等別名。
用蝶豆花當作高品位浪漫的茶品飲用、以及當作天然食品色素制作糕點是拉丁美洲和南洋國家的風情和習俗。
蝶豆花的味道自然甘甜,南洋國家的一些五星級酒店通常把蝶豆花茶當作高貴的迎賓茶來接待貴賓。
營養價值 蝶豆花具有豐富的維他命A,C和E, 而且可以提高免疫力, 幫助和促進皮膚的彈力和骨膠原, 同時還具有補腦,促進腦的活力,防止胃痛,抗憂郁、抗壓力、鎮靜、止驚厥、緩和情緒等天然保健功效。
蝶豆花中的天然藍色素,也是有療效的。如果將其加入檸檬並調制成花茶飲品,就是保健心臟血管的絕佳飲料。
食用價值 蝶豆花的可食部位是葉、花及嫩莢。較幼嫩的葉片及盛開的花朵,亦可拿來煮湯、油炸等。用嫩芽來炒肉絲或煮熟後食用,都十分可口。蝶豆花的葉及花的萃取液,可當作純天然的食品染料。

直達香草(herb4kitchen)
PS.營業用批量報價

錦鯉養殖基本知識

◎飼養與管理的重點 只要不是劇烈的變化,錦鯉很容易適應各水溫水質等環境的變化。並不是沒有大庭園就無法飼養,有人甚至在二樓陽台或頂樓陽台造水池飼養。然而我們是欣賞錦鯉雄壯豪邁之氣,因此水池盡量寬闊為宜,以水深1.2m以上為理想。魚池必須有底水排出,過濾循環等設備。用水不一定要取地下水,自來水也可以飼養。
<因為都市中有景觀安全的需求,及屋頂花園有荷重的需求,錦鯉池水深可以低到30cm左右。>
◎每天排水
A、糞或枯死的藻類全部送至過濾槽的話,耗氧量會增大,pH就下降,更會轉變為亞硝酸,增了過濾槽的負擔。為了盡量減輕過濾槽的負擔,每天至少把魚池的底水排水使固物排出去,把中間水送去沉澱槽及過濾槽。 
B、把固體廢物的魚糞集中排出,最好不要從池底打氣而是從排糞口的上方40~50公分打打氣。如此氣泡往上昇。池水產生對流。污物就集中於排糞口。
<可以設計水流把固體廢物盡量集中或排出到過濾系統中。>
◎過濾槽管理
A、細菌附著於濾材,分解固體廢物會消耗大量的氧。 
B、溶氧不足時,厭氧菌會把硝酸還原亞硝酸,或從碳酸氣發生沼氣,也會從硫酸分解產生硫化氫等有毒氣體。
<如果溶氧不足,可以優先把打氣設備放置到生化過濾槽中。>
◎溶氧要充份
A、水中溶氧不足的話,會影響錦鯉的生育,飼料的消化,,水質的維持等等。
B、硝酸,亞硝酸的濃度增高時,會影響溶氧量。所以優先去除硝酸及亞硝酸。
C、使用沸石可輕易去除硝酸,沸石量約等重於魚體總重量。
<沸石再生法,是將沸石浸泡25℃以上1:10食鹽水數小時,再以清水洗淨即可。>
◎水質的控制
水質硬度高的話,錦鯉肌膚經常會有少許充血的狀態。豔麗性也會慢慢消失,紅緋會上升。pH值低,肌膚變的很不好看,但是雖餵增色飼料,依然不見起色,徒增浪費。pH值7.1~7.5最適宜的。
◎鯉餌的重要性
良好的魚餌不會崩壞鯉的體型。餌的量也是在夏天水溫 高的時候,訂定停餌期間,才是整體來說使鯉變胖最重要的秘訣。如果還是想 要給很多餌的話,要增加循還量。錦鯉在水溫超過28度的時候,應給與相當於 鯉全體重量3%的餌。水溫25度時1.5%,水溫20度時0.3%,16度以下則要停止鯉餌,這就是鯉魚長得強壯的要訣。連續不斷地給鯉餌的話,引起內臟障礙, 而影響到鯉不會長壯,甚至導至體型的變歪。
◎魚病預防
水的管理與定期消毒都是很重要的步驟,…