跳到主要內容

海水農業

海水農業

Seawater farming addresses the severe lack of freshwater and undesirable soil conditions for agricultural activities in coastal regions. Saltwater, instead of freshwater, can be used to directly support a wide range of sustainable agricultural activities and enrich the soils in the coastal regions.

Freshwater, which is defined by having much lower salts and ions concentration than seawater and brackish water, only composes about 2.75% out of all water on Earth, and 74.5% of all freshwater are contained in the glaciers, which are not readily available for consumption. Freshwater is not distributed evenly, and in many regions around the world, such as the Sub-Sahara region and the Sub-Indian continent, water is seriously scarce or heavily contaminated. Freshwater plays an important role in the biological system and are used in many human activities: drinking, recreation, industry and most importantly, food production. Food production, such as agriculture, consumes a large body of freshwater and the lack of freshwater poses a grave challenge to food security and the eradication of hunger in many places in the world. Seawater farming directly addresses this problem by proposing a radically different method of agriculture that does not depend on freshwater and thus relieves the existing constraint on the current freshwater body. In addition, field researches and experiments have shown that seawater farming can transform soil conditions and increase humidity and rainfalls, which will help to further increase the body of freshwater for future consumption. 

While many projects have demonstrated the viability of seawater farming in specific locations, little researches have been done to study seawater farming in a wide variety of conditions. In addition, existing seawater projects rely on a combination of technology and indigenous socioeconomic factors, which might not be easily replicated elsewhere. Thus, although seawater farming has great potential, we need to proceed with caution to prevent severe disruption to the existing environments, which are often very fragile. Therefore, we propose to implement small-scaled, pilot seawater projects in different locations around the world to do field research and collect data. The timeline for the small pilot project is about 2-5 years. After that period, an evaluation will be done in order to decide upon the implementation of large-scaled seawater farming projects. The specific details of the pilot projects, such as locations, budgets and methodology, will be further elaborated in later section.

Existing pilot projects are running independently in Eritrea (Seawater Forest Initiative), Mexico (Seawater Foundation, Bahia Kino), the United Arab Emigrate (UAE University) and Australia (Seawater Green House). Those projects are managed by independent private organizations, with funding coming from both the public and private sectors, and are implemented in very different methodologies, which will be elaborated in the next section.

Implementation

There are different techniques in sustainable “seawater farming”. In Australia, as proposed by Seawater Greenhouse Foundation, seawater are evaporated using sunlight in “green-house” to produce freshwater, which are used to support farming crops such as potatoes, cucumbers and fruits. The salts, by products of the process, are collected and processed into gourmet salts. It is estimated that the seawater green-house has a reduced fixed cost of 10-15% less and operational cost of 10-25% less than the conventional green-house while returns 15-35% more. Seawater Greenhouse Foundation who has designed the existing technology has proposed a pilot project to build an experimental station in Sahara, which will be followed by a large-scaled project.


Figure 1. Diagram of a “seawater greenhouse”: the humid conditions inside the greenhouse is created by the evaporation of seawater at the front of the building at the “seawater surface” through porous cardboard. Some evaporated seawater is condensed as freshwater to irrigate the crops or stored away for future usage. When the air leaves the growing area, it passes through the second evaporator over which seawater is flowing. The air is warmed up and humidified since this seawater has been heated by the sun in a network of pipes above the growing area. The humidified air then meets a series of vertical pipes through which cool seawater passes and condense water droplets that run down to the base to be collected. Increased humidity in the air will also help to increase regional rainfalls. The entire operation is run by solar energy, with very little additional electricity input. Retrieved from http://seawatergreenhouse.com on November 24, 2010.

In Eritrea and Mexico, under a different approach proposed by Carl Hodges, astrophysicist-turned environmental entrepreneur, the saltwater is used in a complex system of integrated farming. A key feature of integrated farming is the emphasis on multi-species cultivations: shrimps, fish, mangroves, seaweeds and live-stocks. In such a system, wastes from one species are managed as nutrients for another species and thus effectively minimized to prevent pollution to the environment.

Figure 2. An illustration of the integrated seawater farming.
Received from 
http://www.seawaterfoundation.org on November 24, 2010
There are many stages in Carl Hodges’s proposed farming system. First, seawater is channeled from the sea into shrimps and fish-farms. Rich nutrients from sea-water are used to grow saline-tolerant, profitable species such as white-leg shrimp (Penaeus vannamei), Indian prawn (Penaeus indicus), tilapia fish and milk-fish (chanos chanos). The water from the shrimp and fish farms, enriched with organic matters, are channeled into large farms that grow halophytes (Salicornia)and mangroves. These species of trees are highly tolerant of salt and can remove salt from the water and retain them in the bodies. The bodies and leaves, while processed are suitable for human consumption, can be fed directly to live-stocks such as goats and camels. The left-over roots help to stabilize the soil against erosions. Water evaporation from vast-stretches of seawater farm will increase humidity and rainfalls, bringing desirable conditions for other economic activities. The long-term objective of this farming system is the transforming of the coastal region through sustainable and natural means: increased humidity and enriched soil will eventually be able to support fresh-water farming.

Zanella (2009) succinctly summarized the basic components of seawater farming: a shrimp production facility, a mangrove forest, wetland systems, and field of the halophyte Salicornia. Each component must meet specific criteria in the eco-system of the integrated farm. The shrimp production facility must be made in concrete ponds to prevent the seeping and contamination of saltwater into the aquifer beneath. After the seawater is channeled into the shrimp and fish farm, the mangrove forest is flood-irrigated with the effluent from the shrimp and fish farms. Some water are filtered and return to the sea, while the rest are used to irrigate the wetlands, the Salicornia fields and the mangrove trees.

Unlike the Australian Seawater Greenhouse, Carl Hodges’ seawater integrated farm does not directly produce fruits, vegetables or grains. However, seawater integrated farm indirectly reduces hunger by creatively increasing means of productions, creating jobs and eradicating the poverty problem. Mission 2014 Study has indicated that the world agricultural system is currently producing enough food to feed everyone but the poorest do not have the mean to access them. Thus, when the people are employed through seawater integrated farming, they can use the money to purchase the food that they need.

At the peak of its operations in Eritrea, the farms employed almost 800 local people, shipped one metric ton of premium shrimp a week to Europe or the Middle East and cultivated 100 hectares of the oil seed crop salicornia, and was completing the planting of 100 hectares of seawater forest. Additionally it created a 60 hectare wetland, which welcomed over 200 species of birds and many other animals to a new home in the desert and kept the used aquaculture seawater from returning directly to the sea. (Marty Dickenson, 2008)

In addition to eradicating hunger and poverty, seawater integrated farming holds promise to solve climate and energy problems. Recent studies have also suggested that the farmed halophytes such as Salicornia can be used to make biofuels. A NASA study shows that farming Salicornia on the area equivalent to Sahara desert can meet 90% of the energy demand of the world. Currently, Seawater Global Inc, a for-profit corporation that spins off from Seawater Foundation, is marketing processed biofuels made from Salicornia. OASE (Organisation for Agriculture in Saline Environments), a similar organization in Europe, is marketing several Sacorlina-based food products (under trade-marked names as “FreshTips”, “Kelp Chips”, “Zeekraal”, “CHIPS UIT ZEE”) to EU markets.

Finances

Past projects have been successfully funded by FAO, the World Bank and local governments. Private investors have shown increased interest in seawater greenhouse and integrated farming of Sacorlina as biofuel materials.

Estimated cost for a seawater greenhouse: about $140/m2

Estimated area for a seawater greenhouse: ~ 2000 m2 ~ $280000

Seawater integrated farm needs a much larger initial investment of 15-35 million dollars, depending on locations. Budget might include initial purchase/lease of land, purchase/lease of tractors and other heavy machines, purchase of initial seeds of plants and animals.

Proposed pilot projects:

We propose to implement a number of pilot projects to investigate the feasibility of implementing large-scaled seawater greenhouse and seawater farming in specific regions around the world. The conditions for the implementation of the pilot projects include, not limited to: the availability of seawater, land and sunlight, the cooperation from local government and people, committed funding from International organizations.

We propose to resume and increase funding to the successful pilot projects in Eritrea and Mexico while expanding the locations of new projects to India, Pakistan, China, Indonesia, Vietnam, Cambodia, Thailand, South Africa, Egypt, Libya and Algeria.

Pilot projects will be run from 2-5 years. Preliminary results are collected after two years since complete developments of plants such as mangroves take about two years.

The exact number of pilot projects, as well as the methodologies, is pending discussions and investigations from other branches of Mission 2014. However, from the preliminary cost-analysis, the implementation of seawater greenhouse has lower-risk and can proceed to fieldwork quite readily while the implementation of seawater integrated farming will take a more careful approach.

However, some issues remain with seawater farming:
Currently there is no vegetable or grain crop that has high saline tolerance.
The projects might run out of fund due to its long time-line.
Maintenance requires technical expertise, which necessitates the technology transfer from the designer to local people.
Sustainability depends on the awareness of local population to continuously support and maintain such initiatives. The project in Eritrea was shut down in 2003 mainly due to local political upheaval.
Works cited: 


Japan for Sustainability. (2010, November 23). Oyster Farming Method Purifies Seawater. Retrieved November 23, 2010, from Japan for Sustainability: http://www.japanfs.org/en/pages/025656.html


Landais, E. (2010, November 23). Researchers explore ways to use sea water for farming. Retrieved November 23, 2010, from gulfnews.com: http://gulfnews.com/news/gulf/uae/environment/researchers-explore-ways-to-use-sea-water-for-farming-1.711262


Dickenson, M (July 10, 2008). "The old man who farms with the sea". Los Angeles Times.http://www.latimes.com/news/science/environment/la-fi-seafarm10-2008jul10,0,1092....


Organisation for Agriculture in Saline Environments. (2010, November 23). Organisation for Agriculture in Saline Environments. Retrieved November 23, 2010, from Organisation for Agriculture in Saline Environments:http://www.oasefoundation.eu/


Seawater Foundation. (n.d.). Seawater Foundation. Retrieved November 23, 2010, from Seawater Foundation:http://www.seawaterfoundation.org


Seawater Greenhouse. (2010, November 23). Seawater Greenhouse. Retrieved November 23, 2010, from Seawater Greenhouse: http://seawatergreenhouse.com


Sustainable farming with saltwater - Africa. (2002). Biodiversity, 3(1), 34-35. Retrieved November 22, 2010, from ProQuest Environmental Science Journals. (Document ID: 545411911).


Zanella, D. Seawater Forestry Farming: An adaptive management strategy for productive opportunities in "barren" coastal lands. M.A. dissertation, California State University, Fullerton, United States -- California. Retrieved November 22, 2010, from Dissertations & Theses: Full Text.(Publication No. AAT 1470817).

留言

這個網誌中的熱門文章

蔬菜對溫度日照條件的要求

蔬菜對溫度日照條件的要求
全日照  8個小時日照 瓜類、茄果類、豆類、山藥、豆薯(地瓜)。番茄、黃瓜、茄子、辣椒等喜溫中、強光性
蔬菜夏秋季生產,玉米、青椒、西瓜、南瓜、西紅柿、茄子、芝麻、向日葵類。
其次是根莖類,如:馬鈴薯、甜菜、胡蘿蔔、白蘿蔔、甘藷、山藥等等。至少需半日照,才能生長,芋頭雖喜歡全日照,但比其他蔬菜耐蔭。 
需要中等光照大白菜、甘藍、芥菜、蒜、洋蔥。 

長日性蔬菜白菜、甘藍、芥菜、蘿蔔、胡蘿蔔、芹菜、菠菜、萵苣、蠶豆、豌豆、大蔥、洋蔥。

短日性蔬菜豇豆、扁豆、莧菜、空心菜。         

中光性蔬菜黃瓜、番茄、茄子、辣椒、菜豆

菜豆

菜豆喜溫暖,不耐高溫和霜凍。菜豆種子發芽的適溫為20-30℃;在40℃以上的高溫和10℃以下的低溫,種子不易發芽。幼苗生長適宜氣溫為18-25℃。花芽分化的適宜氣溫為20-25℃,過高或過低溫度易出現發育不完全的花蕾、落花。

菜豆對光照強度的要求較高。在適宜溫度條件下,光照充足則植株生長健壯,莖的節間短而分枝多,開花結莢比較多,而且有利於根部對磷肥的吸收。當光照強度減弱時,植株易徒長,莖的節間長,分枝少,葉質薄,而且開花結莢數少,易落花落莢。

菜豆根系強大,能耐一定程度乾旱,但喜中度濕潤土壤條件,要求水分供應適中,不耐澇。生長期適宜土壤濕度為田間最大持水量的60%-70%,空氣相對濕度以80%為宜。開花結莢期對水分最敏感,此期土壤乾旱對開花結莢有不良影響,開花數、結莢數及莢內種子數減少。土壤水分過大時,下部葉片黃化,早脫落。空氣濕度過大會引起徒長、結莢不良。

菜豆具有深根性和根瘤菌,對土壤的要求不甚嚴格,但仍以土層深厚肥沃、排水良好的輕砂壤土或粘質壤土為好。土壤過於粘重、低溫、排水和通氣不良則生長不良,炭疽病重。菜豆喜中性至微酸性土壤,適宜的土壤pH為5-7.0,其中以州6.2-6.8最適宜。菜豆最忌連作,生產中應實行2-3年輪作。

菜豆生育過程中,主要吸收鉀和氮較多,還要吸收一定量的磷和鈣,才能良好發育。結莢期吸收磷鉀量較大。磷鉀肥對菜豆植株的生長發育、根瘤菌的發育、花芽分化、開花結莢和種子的發育等均有影響。缺乏磷肥,菜豆嫩莢和種子的品質和產量就會降低。缺鈣,幼葉葉片捲曲,葉緣失綠和生長點死亡。缺硼,則根係不發達,影響根瘤菌固氮,使花和豆莢發育不良。 耐陰半陰(大概3-4小時日照) 應選擇耐陰的蔬菜種植,如萵…

錦鯉養殖基本知識

◎飼養與管理的重點 只要不是劇烈的變化,錦鯉很容易適應各水溫水質等環境的變化。並不是沒有大庭園就無法飼養,有人甚至在二樓陽台或頂樓陽台造水池飼養。然而我們是欣賞錦鯉雄壯豪邁之氣,因此水池盡量寬闊為宜,以水深1.2m以上為理想。魚池必須有底水排出,過濾循環等設備。用水不一定要取地下水,自來水也可以飼養。
<因為都市中有景觀安全的需求,及屋頂花園有荷重的需求,錦鯉池水深可以低到30cm左右。>
◎每天排水
A、糞或枯死的藻類全部送至過濾槽的話,耗氧量會增大,pH就下降,更會轉變為亞硝酸,增了過濾槽的負擔。為了盡量減輕過濾槽的負擔,每天至少把魚池的底水排水使固物排出去,把中間水送去沉澱槽及過濾槽。 
B、把固體廢物的魚糞集中排出,最好不要從池底打氣而是從排糞口的上方40~50公分打打氣。如此氣泡往上昇。池水產生對流。污物就集中於排糞口。
<可以設計水流把固體廢物盡量集中或排出到過濾系統中。>
◎過濾槽管理
A、細菌附著於濾材,分解固體廢物會消耗大量的氧。 
B、溶氧不足時,厭氧菌會把硝酸還原亞硝酸,或從碳酸氣發生沼氣,也會從硫酸分解產生硫化氫等有毒氣體。
<如果溶氧不足,可以優先把打氣設備放置到生化過濾槽中。>
◎溶氧要充份
A、水中溶氧不足的話,會影響錦鯉的生育,飼料的消化,,水質的維持等等。
B、硝酸,亞硝酸的濃度增高時,會影響溶氧量。所以優先去除硝酸及亞硝酸。
C、使用沸石可輕易去除硝酸,沸石量約等重於魚體總重量。
<沸石再生法,是將沸石浸泡25℃以上1:10食鹽水數小時,再以清水洗淨即可。>
◎水質的控制
水質硬度高的話,錦鯉肌膚經常會有少許充血的狀態。豔麗性也會慢慢消失,紅緋會上升。pH值低,肌膚變的很不好看,但是雖餵增色飼料,依然不見起色,徒增浪費。pH值7.1~7.5最適宜的。
◎鯉餌的重要性
良好的魚餌不會崩壞鯉的體型。餌的量也是在夏天水溫 高的時候,訂定停餌期間,才是整體來說使鯉變胖最重要的秘訣。如果還是想 要給很多餌的話,要增加循還量。錦鯉在水溫超過28度的時候,應給與相當於 鯉全體重量3%的餌。水溫25度時1.5%,水溫20度時0.3%,16度以下則要停止鯉餌,這就是鯉魚長得強壯的要訣。連續不斷地給鯉餌的話,引起內臟障礙, 而影響到鯉不會長壯,甚至導至體型的變歪。
◎魚病預防
水的管理與定期消毒都是很重要的步驟,…

蝶豆花

蝶豆花 原產拉丁美洲的蝶豆花是一種典型的熱帶蔓藤植物,全年盛開。
butterfly pea,拉丁語叫:Clitoria ternatea,泰語叫Dok Anchan
中文名叫蝶豆花,藍蝶花,藍蝴蝶、蝴蝶藍花,還有蝴羊豆、豆碧等別名。
用蝶豆花當作高品位浪漫的茶品飲用、以及當作天然食品色素制作糕點是拉丁美洲和南洋國家的風情和習俗。
蝶豆花的味道自然甘甜,南洋國家的一些五星級酒店通常把蝶豆花茶當作高貴的迎賓茶來接待貴賓。
營養價值 蝶豆花具有豐富的維他命A,C和E, 而且可以提高免疫力, 幫助和促進皮膚的彈力和骨膠原, 同時還具有補腦,促進腦的活力,防止胃痛,抗憂郁、抗壓力、鎮靜、止驚厥、緩和情緒等天然保健功效。
蝶豆花中的天然藍色素,也是有療效的。如果將其加入檸檬並調制成花茶飲品,就是保健心臟血管的絕佳飲料。
食用價值 蝶豆花的可食部位是葉、花及嫩莢。較幼嫩的葉片及盛開的花朵,亦可拿來煮湯、油炸等。用嫩芽來炒肉絲或煮熟後食用,都十分可口。蝶豆花的葉及花的萃取液,可當作純天然的食品染料。

直達香草(herb4kitchen)
PS.營業用批量報價